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Abstract Two-wheeled self-balancing robot, mov-
ing on a horizontal plane, may be presented by a set
of highly coupled nonlinear differential equations. In
the recent literatures and in the commonly used two-
wheeled self-balancing robots, the control algorithms
are designed based on the mathematical models with
simplified structure. In these models, a nonlinear cou-
pling term is usually neglected, whereas it has signif-
icant effects on the dynamic behavior of the system.
In this paper, the mathematical representation of two-
wheeled self-balancing robots, including this new term,
is derived using both Kane’s and Lagrangian methods.
The significant effect of the new term on the response
of the system is shown by presenting the behavior of
the system under different conditions and by com-
paring it with the system models when this term is
neglected. Then sliding-mode control techniques are
used to derive the controllers. The controller objec-
tive is to drive the two-wheeled self-balancing robot to
the desired path as well as to make the robot stable.
By some simulations, the behavior of the robot with
the proposed controller is discussed. It is shown that if
the nonlinear coupling term is ignored in designing the
controller, the controller cannot compensate its effect.
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1 Introduction

Due to the nonholonomic constraints and inherent
instability, the problem of two-wheeled robot is an
interesting and challenging case in control and dynamic
systems. Some practical two-wheeled self-balancing
robots are the JOE [1], the B2 [2], and the com-
mercial product Segway [3], etc. Generally the equa-
tions of motion of wheeled robots with unstable chas-
sis (inverted pendulum) are coupled and convoluted.
This complexity arises from two factors: nonholo-
nomic constraints and complicated mechanism. Many
researchers have been devoted to the stability analy-
sis and control system design of the two-wheeled self-
balancing robots. However, fewer investigations have
been devoted to the problem of dynamical modeling.
In the field of control, Ravichandran and Mahindrakar
presented a controller design and employed a strategy
that combines time scaling and Lyapunov redesign.
They verified the methodology by employing it in a
two-wheeled robot [4]. Maddahi et al. [5] investigated
the design and validation of a controller for an iner-
tial two-wheeled vehicle using the Lyapunov’s feed-
back control design technique. The existence, continu-
ity, and uniqueness of the solution for the proposed con-
trol system are proved utilizing the Filippov’s solution.
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Huang et al. [6] improved a robust-velocity-tracking by
proposing two sliding-mode control methods. Cui et
al. [7] designed a backstepping-based adaptive control
to achieve tracking for the two-wheeled self-balancing
robot. Yue et al. considered the overall dynamical
model of Grasser [1], as three subsystems: rotational
motion, longitudinal motion, and zero dynamics. Par-
ticularly, the inclination angle of the chassis is treated
as zero dynamics where the longitudinal acceleration is
taken as the control input. Then the sliding-mode con-
trol techniques are used to derive the controllers [8].
In another paper they employed adaptive laws for the
design parameters beside the sliding-mode controllers
[9].

In the field of dynamical modeling, many researchers
are devoted to the modeling of the two-wheeled mech-
anisms, which has more degrees of freedom compared
with the regular two-wheeled self-balancing robot. A
regular two-wheeled self-balancing robot has two actu-
ated drive wheels connected to an intermediate chassis.
Goher et al. [10] employed Lagrangian approach for
dynamical modeling of two-wheeled robots and added
more degrees of freedom in comparison with the works
done by the former researchers. Larimi et al. [11] pre-
sented a new stabilization mechanism of two-wheeled
mobile robots, where a reaction wheel is considered
to control the position of center of gravity (CoG).
Almeshal et al. [12] employed Lagrangian approach
for dynamical modeling of two-wheeled robots and
added more degrees of freedom in comparison with the
works done by the former researchers. Huang et al. [13]
investigated a novel narrow vehicle based on a two-
wheeled robot and a movable seat. The dynamic model
of the vehicle is derived by Lagrange’s equation of
motion.

On the dynamical modeling of the regular two-
wheeled self-balancing robot, Grasser [1] derived
a dynamic model of the system using Newtonian
approach and linearized the equations around an oper-
ating point to design a controller. Pathak [14] analyzed
the dynamic model from a controllability and feedback
linearizability point of view. Kim et al. [15] investi-
gated the dynamics of the robot with the aid of Kane’s
method. Kim’s formulation is used by many researchers
for their control purposes.

In this paper, we derive a modified formulation
for two-wheeled self-balancing robots and compare
our results with Kim’s formulation. We will show
that there is a term which is not considered in the

reference [15] and in the other related references.
The existence of this term is proved by obtaining
dynamical equations with both Lagrangian approach
and Kane’s method. The importance of the new term
is examined by presenting its effects on the free
response of the system and by applying sliding-mode
controllers.

The content of this article is organized as follows:
In Sect. 2, the system is described and dynamical
equations are derived, using both Kane’s method and
Lagrangian approach, and open-loop simulation results
are presented; Sect. 3 is devoted to the design of sliding-
mode controllers, and finally, conclusions are presented
in Sect. 4.

2 System description and dynamical
representation

Two-wheeled robot which is analyzed in this article is
a chassis mounted on the top of an axel incorporating
two wheels where the chassis has no balancing sup-
port. The robot is powered by two DC motors driving
the robot wheels. It has four degrees of freedom, three
degrees are due to the movement of the wheels on the
horizontal plane (including two positions and the steer-
ing angle of the chassis), and the fourth degree is due to
the inclination angle of the unstable chassis which acts
like an inverted pendulum (DOF = 4) (see Figs. 1, 2).
However, the system has three differentiable degrees
of freedom (DDOF = 3), which means that the system
has three independent achievable velocities [16]. The
independent velocity of a two-wheeled self-balancing
robot can be represented with three axes, one represent-
ing the instantaneous longitudinal velocity, the second

Fig. 1 Robot and road reference frame
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Fig. 2 Representation of
the robot and configuration
parameters

representing the instantaneous steering angular veloc-
ity of the robot, and the third representing the instan-
taneous change of the inclination angle of the chassis.
We define the configuration variables of the system ini-
tially as

[
x, y, θ, γ, ϕ1, ϕ2

]T, where x and y are the
position of the system in the horizontal plane (midway
between the two wheels’ center), θ is the steering angle
of the chassis, measured from the inertial x-axis, and
γ is the attitude, or the inclination angle of the chassis
measured from the z-axis. Parameters ϕ1 and ϕ2 are
the rotational angles of the first wheel and the second
one, respectively (see Figs. 1, 2). The chassis parame-
ters have the subscript ‘ch,’ and the wheel parameters
have the subscript ‘w.’ The motion of the two-wheeled
robot is described by a set of second-order differential
equations, and the nonlinear dynamics of the chassis is
coupled with the dynamics of the wheels. The follow-
ing assumptions have been considered in modeling this
system:

– The body of the system is assumed to be symmetric
with respect to the X1Z1 plane and Y1Z1 plane (see
Fig. 1).

– Slip in tires is ignored.
– Chassis can rotate freely around wheel axes, i.e.,

the impact with the ground is ignored. In prac-
tice, if there are no actuating forces on the sys-
tem, then angle γ cannot be >90◦; because the
arm has contact with the ground, but by consid-
ering h + h′ < rw, this contact will not happen,
where h is distance from central point of the line
between the two wheels to CoG of the chassis, h′
is distance from CoG of the chassis to the top of
the chassis, i.e., h + h′ is distance from central
point of the line between the two wheels to the
top of the chassis, and rw is radius of the wheels
(see Fig. 3).

Fig. 3 Representation of coordinate systems. aChassis’ frames.
b Wheel’s frames

2.1 Kinematics

2.1.1 Chassis kinematics

For kinematic analysis of the robot, we use those coor-
dinate systems which are shown in Figs. 1 and 2.
The frame X0Y0Z0 is the inertial reference frame.
The frame X1Y1Z1 is attached to the chassis, mid-
way between the two wheels’ center, and rotates θ

degree around Z0 axis. Distance from the origin of the
frame X0Y0Z0 to the origin of the frame X1Y1Z1 is
equal to [x, y, rw]. For kinematic analysis of the chas-
sis, we need to define coordinate systems X2chY2ch Z2ch

and X3chY3ch Z3ch . Frame X2chY2ch Z2ch is attached to
the chassis as well as its center is attached to the
center of the frame X1Y1Z1. The pitch angle of γ is
� (

Z1, Z2ch

)
. Frame X3chY3ch Z3ch has the same direc-

tion as X2chY2ch Z2ch , and its origin locates on the center
of mass of the chassis. The distance between the origin
of X2chY2ch Z2ch and the origin of X3chY3ch Z3ch is equal
to h.

Referring to the defined coordinates, transform
matrixes are given as (47)–(49) (see Appendix 1).
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The relative linear and angular velocities are obtained
as (50) and (51). The angular velocity of the chassis and
the linear velocity of the center of mass of the chassis
are presented by (1) and (2), correspondingly:

3chvch =
⎡

⎢
⎣

cos γ (ẋ cos θ + ẏ sin θ) + γ̇ h

−ẋ sin θ + ẏ cos θ + θ̇ h sin γ

sin γ (ẋ cos θ + ẏ sin θ)

⎤

⎥
⎦ (1)

3chwch =
⎡

⎢
⎣

−θ̇ sin γ

γ̇

θ̇ cos γ

⎤

⎥
⎦ (2)

2.1.2 Wheel kinematics

For kinematic analyzing of the wheels, we define
the coordinate systems X2wY2w Z2w , X3wY3w Z3w , and
X4wY4w Z4w (see Fig. 3). The frame X2wY2w Z2w is
accessed by a rotation equal to α about Z1 axis and
a transition equal to l along Y1 axis, where l is half-
distance between wheels. The frame X3wY3w Z3w is
attached to the center of gravity of the wheels and
rotates with wheels, with the angular velocity equal to
ϕ̇. Referring to the defined frames, we obtain the trans-
form matrixes as (52)–(54) and the relative linear and
angular velocities as (55) and (56) (see Appendix 1).

The linear velocity of the center of mass of the
wheels and the angular velocities, in their body frames,
are obtained as (3) and (4), respectively. For the first
wheel, α = π

2 and ϕ = −ϕ1, and for the second wheel,
α = 3π

2 and ϕ = ϕ2.

3wvw =
⎡

⎢
⎣

ẋ cos (θ + α) + ẏ sin(θ + α)

cos ϕ[−ẋ sin (θ+α)+ ẏ cos(θ+α)+l θ̇ ]
− sin ϕ

[−ẋ sin (θ+α)+ ẏ cos(θ+α)+l θ̇
]

⎤

⎥
⎦

(3)

3wωw =
⎡

⎢
⎣

ϕ̇

θ̇ sin ϕ

θ̇ cos ϕ

⎤

⎥
⎦ (4)

2.1.3 Constraint equations

Coordinate system X4wY4w Z4w is used for governing
constraint equations. It is obtained by transition of the
origin of the frame X3wY3w Z3w equal to −rw along Y3w

axis and substituting ϕ = 270. Then the center of frame
X4wY4w Z4w settles on the ground. The velocity of the
origin of the frame X4wY4w Z4w is given by;

4w v4w =
⎡

⎢
⎣

ẋ cos (θ+α)+ ẏ sin(θ+α)−rwθ̇ cos ϕ

−ẋ sin (θ+α) cos ϕ+ ẏ cos(θ+α) cos ϕ+l θ̇ cos ϕ

ẋ sin (θ+α) sin ϕ− ẏ cos(θ+α) sin ϕ−l θ̇ sin ϕ+rwϕ̇

⎤

⎥
⎦

(5)

For the first wheel, we have ϕ = 3kπ
2 , α = π

2 , so,

4wv4w |1st wheel =
⎡

⎢
⎣

−ẋ sin θ + ẏ cos θ

0

−ẋ cos θ− ẏ sin θ+l θ̇+rwϕ̇1

⎤

⎥
⎦

=
⎡

⎢
⎣

0

0

0

⎤

⎥
⎦ (6)

For the second wheel, we have ϕ = 3kπ
2 , α = 3π

2 , so

4wv4w |2nd wheel =
⎡

⎢
⎣

ẋ sin θ − ẏ cos θ

0

ẋ cos θ + ẏ sin θ + l θ̇ + rwϕ̇2

⎤

⎥
⎦

=
⎡

⎢
⎣

0

0

0

⎤

⎥
⎦ (7)

Considering the no-slip condition, at the point of
contact, the velocity of the wheels is equal to zero in
all directions. Thus, the constraint equations can be
written as:

− ẋ sin θ + ẏ cos θ = 0 (8a)

ẋ cos θ + ẏ sin θ − l θ̇ = rwϕ̇1 (8b)

ẋ cos θ + ẏ sin θ + l θ̇ = rwϕ̇2 (8c)

2.2 Lagrangian approach

The Lagrange equation can be written as:

d

dt

(
∂L

∂ q̇i

)
− ∂L

∂qi

= Qi +
N−N0∑

j=1

λ j fi j (i = 1, . . . , N ) (9)

where L = T − U is the Lagrangian. Parameters
T,U, Qi , λi , fi j , N , N0, and qi denote, respectively,
the kinetic energy, the gravitational potential energy,
the generalized force, the Lagrange multipliers, con-
straint equation multiplayer, number of coordinates
required, degree of freedom, and generalized coordi-
nates; and parameter s = N − N0 is number of con-
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Table 1 Lagrange multipliers

fi j j = 1 j = 2 j = 3

i = 1 − sin θ − cos θ − cos θ

i = 2 + cos θ − sin θ − sin θ

i = 3 0 l −l

i = 4 0 rw 0

i = 5 0 0 rw

i = 6 0 0 0

straints. A nonholonomic constraint can be expressed
as:
N∑

j=1

fi jδq j = 0 i = 1, . . . , N − N0 (10)

By comparing (8) and (10), the Lagrange multipliers
will be obtained as given in Table 1.

In the Lagrange’s method, the scalar energy quan-
tity of a system should be clarified [17]. By computing
linear and angular velocity vectors of all rigid bodies,
the total kinetic energy of the system is obtained as:

Ttotal = (2mw + mch)

2

(
ẋ2 + ẏ2

)

+ I1w

2

(
ϕ̇2

1 + ϕ̇2
2

)
+

(
I2w + mwl

2
)

θ̇2

+ 1

2

(
Ixxch + mchh

2
)

θ̇2 sin2 γ

+ 1

2

(
Iyych + h2mch

)
γ̇ 2 + 1

2
Izzch θ̇2 cos2 γ

+mchhγ̇ cos γ (ẋ cos θ + ẏ sin θ)

+mchhθ̇ sin γ (−ẋ sin θ + ẏ cos θ) (11)

where Ixxch , Iyych , and Izzch , denote, respectively, iner-
tia moment of the chassis relative to axes X3ch ,Y3ch ,
and Z3ch ; I1w and I2w denote inertia moment of the
wheel relative to axes X4w and Y4w; and mch and mw

denote mass of the chassis and mass of the wheel. The
gravitational potential energy of the system is:

Utotal = mchg h cos γ + mch g h (12)

where g is acceleration of gravity. Employing (9), we
derive six equations as:

(2mw + mch)ẍ + mchh (γ̈ cos γ cos θ

− γ̇ 2 sin γ cos θ − θ̈ sin γ sin θ

− 2γ̇ θ̇ cos γ sin θ − θ̇2 sin γ cos θ
)

= − sin θ λ1 − cos θ λ2 − cos θ λ3 (13a)

(2mw + mch)ÿ + hmch

[(
−θ̇2 − γ̇ 2

)
sin γ sin θ

+ 2θ̇ γ̇ cos γ cos θ+γ̈ cos γ sin θ+θ̈ sin γ cos θ
]

= cos θ λ1 − sin θλ2 − sin θλ3 (13b)

2(mwl
2 + I2w)θ̈ +

(
Ixxch + mchh

2
)

sin2 γ θ̈

+ Izzch cos2 γ θ̈ +
(
mchh

2 + Ixxch − Izzch

)
sin 2γ

× θ̇ γ̇ + mchh
[− sin θ sin γ ẍ + sin γ cos θ ÿ

]

= l (λ2 − λ3) (13c)

I1w ϕ̈1 = τ1 + rwλ2 (13d)

I1w ϕ̈1 = τ2 + rwλ3 (13e)
(
mchh

2 + Iyych

)
γ̈ + mchh (ẍ cos θ + ÿ sin θ

+ẏθ̇ cos θ
)

cos γ

−1

2

[
−Ixxch − mchh

2 + Izzch

]
θ̇2 sin 2γ

−mchh
[
ẏθ̇ cos γ cos θ

] − mchgh sin γ

= −τ1 − τ2 (13f)

where the parameter λ is the constraint force vec-
tor and τ1 and τ2 are torques acting on the left and
the right wheels provided by the motors, respectively.
Using the above equations, a new formulation for two-
wheeled self-balancing robots is derived as equations
(14), where u is the longitudinal linear velocity of the
chassis (ẋ = u cos θ, ẏ = u sin θ).

(3mw+mch) u̇+h mch(γ̈ cos γ −γ̇ 2 sin γ −θ̇2 sin γ )

= 1

rw
(τ1 + τ2) (14a)

[
2

(
mwl

2 + I2w

)
+ Ixxch sin2 γ + mch h

2 sin2 γ

+ Izzch cos2 γ +mwl
2
]
θ̈+

(
mchh

2+ Ixxch − Izzch

)

× sin 2γ θ̇ γ̇ +mch h sin γ θ̇ u = − l

rw
τ1+ l

rw
τ2

(14b)
(
Iyych + mchh

2
)

γ̈ + mchh cos γ u̇

−1

2

[
Ixxch +mchh

2− Izzch

]
sin 2γ θ̇2−mchgh sin γ

= −τ1 − τ2 (14c)

The main difference between this model and the
commonly used models is the term ‘mchhθ̇ u sin γ .’
We will show that the effect of this term is significant
on the response of the system.
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2.3 Kane’s approach

In this section, we show that the same results can be
obtained using Kane’s approach. In Kane’s method [18,
19], the equations of motion can be derived as follows:

Generalized coordinates qr are selected to define the
position of all points and the orientation of all bodies
of the multibody system.

qr (r = 1, . . . , N0) (15)

where N0 is degrees of freedom.
Generalized speeds ur are functions of q̇i (time

derivative of qi). It is used to simplify the expressions
for linear and angular velocities:

ur = Zr (q, t) +
N0∑

i=1

Yri (q, t)q̇ı (1 < r < N0) (16)

where Yri and Zr are functions of q1, . . . , qN0 and the
time t , whereas ur = q̇r is the straightforward and
conspicuous definition. In our system, the generalized
speeds are defined as follows:

u1 = u, u2 = θ̇ , u3 = γ̇ (17)

Kane’s method requires the computation of absolute
velocities and accelerations. All calculations of the
velocities and accelerations of the chassis are per-
formed in the frame X3chY3ch Z3ch , and those of the
wheels are performed in the frame X1Y1Z1. The linear
and angular velocities and accelerations of bodies are
as (19–21), where B1 and P1 denote the body and the
center of mass of the chassis, respectively. Bi , i = 2, 3,
represents the body of the first and the second wheels,
and Pi , i = 2, 3, is the center of mass of the first and
second wheels, respectively.

�vP1 = (u3h + cos γ u1)�ı3ch + u2h sin γ �j3ch

+ u1 sin γ �k3ch (18a)

�vP2 = (u1 + l u2)�ı1 (18b)

�vP3 = (u1 − l u2)�ı1 (18c)

�ωB1 = −u2 sin γ �ı3ch + u3 �j3ch + u2 cos γ �k3ch (19a)

�ωB2 =
(
u1

rw
+ l

rw
u2

)
�j1 + u2�k1 (19b)

�ωB3 =
(
u1

rw
− l

rw
u2

)
�j1 + u2�k1 (19c)

�aP1 =
(

cos γ u̇1 + h u̇3 − h sin γ cos γ u2
2

)
�ı3ch

+ (h sin γ u̇2 + hcos γ u2u3 + u1 u2

+ h cos γ u2u3) �j3ch +
(

sin γ u̇1 − hu2
3

− h sin2 γ u2
2

) �k3ch (20a)

�aP2 = (u̇1 + l u̇2) �ı1 + (u1 + l u2) u2 �j1 (20b)

�aP3 = (u̇1 − l u̇2) �ı1 + (u1 − l u2)u2 �j1 (20c)

�αB1 = (−u̇2 sin γ − u2u3 cos γ ) �ı3ch + u̇3 �j3ch

+ (u̇2 cos γ − u2 u3 sin γ )�k3ch (21a)

�αB2 =
(
u̇1

rw
+ l

rw
u̇2

)
�j1 −

(
u1

rw
+ l

rw
u2

)
u2�ı1

+ u̇2�k1 (21b)

�αB3 =
(
u̇1

rw
− l

rw
u̇2

)
�j1 −

(
u1

rw
− l

rw
u2

)
u2�ı1

+ u̇2�k1 (21c)

where the vectors �ı , �j , and �k with ‘3ch’ and ‘1’ sub-
scripts, denote unit vectors in the frames X3chY3ch Z3ch

and X1Y2Z3, respectively.
Partial linear velocity �V P

r and partial angular
velocity �Ω P

r are time-varying linear functions of the
u′
r s and can be expressed as:

�V Pi
r = ∂ �vPi

∂ur
(22)

�ΩBi
r = ∂ �ωBi

∂ur
(23)

Utilizing (22–23), the partial linear and angular
velocities are obtained as shown in Tables 2 and 3.

Table 2 Partial linear velocities

�V Pi
r r = 1 r = 2 r = 3

i = 1 cos γ �ı3ch + sin γ �k3ch h sin γ �j3ch h �ı3ch

i = 2 �ı1 l �ı1 0

i = 3 �ı1 −l �ı1 0

Table 3 Partial angular velocities

�ΩBi
r r = 1 r = 2 r = 3

i = 1 0 − sin γ �ı3ch + cos γ �k3ch �j3ch

i = 2 1
r �j1 + l

r �j1 + �k1 0

i = 3 1
r �j1 − l

r �j1 + �k1 0
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Table 4 Active forces and torques

i = 1 i = 2 i = 3

RPi −mchg cos γ �k3ch + mchg sin γ �ı3ch −mwg�k1 −mwg�k1

MBi −(τ1 + τ2) �j3ch τ1 �j1 τ2 �j1

Generalized active forces Fr are the active forces
or torques inserting energy to the system. These forces
might be external or internal.

Fr =
κ∑

i=1

�V Pi
r · �RPı

+
β∑

j=1

�ΩBj
r · �MBJ (r = 1, . . . , N0) (24)

�RPı (1 ≤ i ≤ κ) is the effect of κ contact and dis-
tance active forces and �MBj (1 ≤ j ≤ β) is the effect
of β active torques. Active forces and torques for our
system are presented in Table 4.

Generalized inertia forces F∗
r would rely on an

equation of the form:

F∗
r =

μ∑

i=1

V Pi
r · R∗

pi

+
η∑

j=1

Ω
Bj
r · T ∗

Bj
(r = 1, . . . , N0) (25)

where μ, η, R∗
pi , and T ∗

Bj
denote, respectively, the num-

ber of points retaining mass, the number of rigid bodies
retaining inertia, inertia forces, and inertia torques. We
have:

R∗
pi � −mPi a

Pi (26)

T ∗
Bj

� −αBj .I
Bj
B∗
j − ωBj × I

Bj
B∗
j .ωBj (27)

where mPi , a
Pi , αBj , I

Bj
B∗
j , and ωBj denote the mass of

Pi , acceleration of Pi , angular velocity of Bj , inertia
dyadic of Bj about its mass center B∗

j , and the angular
velocity of Bj , respectively. Kane’s equation has the
following form:

F∗
r + Fr = 0 (28)

The dynamical formulations for two-wheeled self-
balancing robots are derived as follows:

(3mw+mch) u̇+h mch

(
γ̈ cos γ −γ̇ 2 sin γ −θ̇2 sin γ

)

= 1

rw
(τ1 + τ2) (29a)

[
2

(
mwl

2 + I2w

)
+ Ixxch sin2 γ + mch h2 sin 2γ

+ Izzch cos2 γ + mw l2
]
θ̈

+
(
mchh

2 + Ixxch − Izzch

)
sin 2γ θ̇ γ̇

+mchh sin γ θ̇ u = − l

rw
τ1 + l

rw
τ2 (29b)

(
Iyych + mchh

2
)

γ̈ + mchh cos γ u̇

−1

2

[
Ixxch + mchh

2 − Izzch

]
sin2γ θ̇2

−mchgh sin γ = −τ1 − τ2 (29c)

These equations are identical to (14). As it men-
tioned before, there is a term which is neglected in
Kim’s model [15] and other commonly used two-
wheeled robot’s models. We will show the effects of
the new term by some simulation results in the next
section.

2.4 Open-loop simulation

In this section, the dynamical behavior of the robot is
put on display. The main objective is to represent the
effect of the term ′mchhθ̇ u sin γ ′ on the behavior of the
system, and to compare it with the case where this term
is not considered. Let us define the former model as the
‘conventional model’ (CM) and the model presented in
this paper as the ‘modified model’ (MM), and the term
′mchhθ̇ u sin γ ′ as the modified term. Simulations are
based on free response of the system with arbitrary
initial conditions and no forcing. The robot parameters
are shown in Table 5. The values are obtained from
an experimental model of two-wheeled self-balancing
robot, which we constructed in Khaje Nasir University
of Technology.

The robot is considered to start moving from the
origin of the horizontal plane. The pendulum is devi-
ated from its downward position with the initial angle
and angular velocity of γ0 and γ̇0, respectively; fur-
thermore, an initial longitudinal (forward) velocity of
u0 is applied to the chassis. If θ̇ , the angular velocity
of the chassis in the x−y plane, were equal to zero,
the simple situation of moving chassis of the robot on
the straight line would happen; and by this assumption,
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Table 5 Robot parameters

Property Unit Value Definition

mch kg 3.99 Mass of the chassis

mw kg 1.064 Mass of the wheel

I yych kg m2 0.043 Inertia moment of the chassis
relative to axes Y3ch

I xxch kg m2 0.068 Inertia moment of the chassis
relative to axes X3ch

I zzch kg m2 0.044 Inertia moment of the chassis
relative to axes Z3ch

I1w kg m2 0.009 Inertia moment of the wheel
relative to axes X4w

I2w kg m2 0.043 Inertia moment of the wheel
relative to axes Y4w

g m2 s−1 9.81 Acceleration of gravity

rw m 0.3 Radius of the wheels

l m 0.2 Half-distance between wheels

h m 0.2 Distance from central point of
the line between the two
wheels to CoG of the chassis

Table 6 Initial conditions

Parameter x0 y0 θ0 γ0 u0 θ̇0 γ̇0

Value 0 0 0 π
2 4 π

5
π
10

Unit m m rad rad m s−1 rad s−1 rad
s

two-wheeled robot converts to cart and inverted pendu-
lum. In that case, there is no difference between ‘con-
ventional model’ and ‘modified model.’ For our case,
the rotation of the chassis in x−y plane is brought up
assuming that θ̇0 �= 0 and equal to π

5

( rad
s

)
. Therefore,

it is conspicuous that mchhθ̇ u sin γ �= 0 and dissimi-
larities between time domain response and phase por-
trait of ‘modified model’ and ‘conventional model’ are
expected. Initial conditions are shown in Table 6. Fig-
ure 4 represents the path of the chassis, in x−y plane,
for ‘modified’ and ‘conventional models’ and Fig. 5
represents time response and phase domain portrait of
parameters.

From Figs. 4 and 5, it is accessible that there are
significant distinctions between ‘modified’ and ‘con-
ventional’ models. The main difference is evident in
Fig. 4 which depicted paths of ‘modified’ and ‘conven-
tional’ models on the horizontal plane. It is noticeable
that the system with ‘conventional model’ moves on
a circle, and however, the ‘modified model’ moves on

-5 0 5 10
-2

0

2

4

6

8

10

12

x (m)

y 
(m

)

CM
MM

start point

one period
is completed

for MM

one period
 is completed 

for CM

Fig. 4 Path for ‘modified model’ (MM) and ‘conventional
model’ (CM) in horizontal plane

a quit different path. Its path is similar to congruent
rotated equilateral triangles path.

Figure 5a, b exemplifies the time response of x and
trajectory in the phase space for ẋ − x . In Fig. 5c, d the
time response of y and phase portraits for y− ẏ are rep-
resented. Figure 5e, f illustrates time response of θ and
phase portrait for θ−θ̇ . It is seen that there is transparent
difference between the responses of the ‘conventional’
and ‘modified models’. Figure 5g, k exemplifies time
response of γ and its trajectory in phase space.

The total energy function is acquired by summation
of the kinetic energy (11) and the potential energy (12).
We assume that the potential energy of the system is
equal to zero when the pendulum is vertically down-
ward. Figure 6 shows the total energy of both systems.
The initial kinetic and potential energies of the sys-
tem are equal to 57.57 and 9.78, respectively. Accord-
ingly, total energy of the system is equal to 67.35. From
Fig. 6, it is obvious that total energy level of ‘modified
model’ is constant during simulation time and equal
to the initial energy value, but the total energy of the
‘conventional model’ is varying with time. It means
that consistency of energy level exists for ‘modified
model,’ but not for the ‘conventional model.’ It is a
second proof that the dynamical equations and sim-
ulations which are obtained in this paper are correct
and the term ‘mch hθ̇ u sin γ ′ has an important role in
dynamical behavior of the two-wheeled robots.

3 Control system design

In this section, sliding-mode control techniques are
used to derive the controllers. The controller objec-
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Fig. 5 a Position (x direction) versus time for ‘modified model’
(MM) and ‘conventional model’ (CM). b Phase portrait for x, ẋ
for ‘modifiedmodel’ (MM) and ‘conventionalmodel’ (CM) (sim-
ulation time 100 s). c Position (y direction) versus time for ‘mod-
ified model’ (MM) and ‘conventional model’ (CM). d Phase
portrait for y, ẏ for ‘modified model’ (MM) and ‘conventional
model’ (CM) (simulation time 100 s). e Steering angle of the

chassis (θ) versus time for ‘modified model’ (MM) and ‘con-
ventional model’ (CM). f Phase portrait for θ, θ̇ , for ‘modified
model’ (MM) and ‘conventional model’ (CM) (simulation time
100 s). g Inclination angle of the chassis (γ ) versus time for
‘modified model’ and ‘conventional model.’ h Phase portrait for
γ, γ̇ for ‘modified model’ (MM). k Phase portrait for γ, γ̇ for
‘conventional model’ (CM)
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Fig. 6 Total energy versus time for ‘modified model’ (MM) and
‘conventional model’ (CM)

tive is to derive the two-wheeled self-balancing robot
to the desired path as well as to make the robot sta-
ble. We are going to show that if we ignore the non-
linear coupling term in designing the controller, the
controller cannot compensate the nonlinear coupling
term’s effect. For control design dynamical equations
of two-wheeled self-balancing robots, i.e., Eq. (29) is
rewritten in the following form:

u̇ = Λu θ̇
2 + Ψu γ̇

2 + Xu(τ1 + τ2) + Φug (30a)

γ̈ = Λγ θ̇2 + Ψγ γ̇ 2 + Xγ (τ1 + τ2) + Φγ g (30b)
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θ̈ = Λθ θ̇u + Ψθ γ̇ θ̇ + Xθ (τ1 − τ2) (30c)

where Λu , Ψu , Xu, Φu , Λγ , Ψγ , Xγ , Φγ , Λθ , Ψθ and
Xθ are defined in Appendix 2.

For the control system design, the idea of sliding-
mode controller based on zero-dynamics theory is used
[8]. By defining τ1 − τ2 = τw and τ1 + τ2 = τv ,
the system converts to two subsystems: the longitudi-
nal subsystem and the rotational subsystem. The lon-
gitudinal subsystem consists of the first two equations
of the vehicle dynamics, called the {u, γ }-subsystem,
and the rotational subsystem consists of the third equa-
tion of the vehicle dynamics called the {θ}-subsystem.
{u, γ }-subsystem with τv as the control input and two
degrees of freedom is an under actuated subsystem,
while {θ}-subsystem with τw as the control input and
one degree of freedom is an actuated subsystem. The
{u, γ }-subsystem can be written as:
{
u̇ = Λu θ̇

2 + Ψu γ̇
2 + Xuτv + Φug

γ̈ = Λγ θ̇2 + Ψγ γ̇ 2 + Xγ τv + Φγ g
(31)

And the {θ}-subsystem can be written as:

θ̈ = Λθ θ̇u + Ψθ γ̇ θ̇ + Xθ τw (32)

The sliding-mode control techniques are used to
derive the controllers since they are insensitive to para-
meter variation and uncertain disturbance. The incli-
nation angle γ is controlled by the torque τv , and
the rotational angle θ is controlled by the torque τw.
While the longitudinal velocity u cannot be controlled
directly, the inclination angle of the pendulum has a
direct influence on it. As a result based on the non-
linear dynamic theory, we have used zero dynamics,
where the inclination angle of the robot is consid-
ered as zero dynamics where the longitudinal accel-
eration, i.e., u̇d , is taken as the control input [8]. With
the appropriate controller, the zero-dynamics subsys-
tem would be stable. As a result, the overall controller
is considered as three subcontrollers: rotational con-
troller, longitudinal controller, and zero-dynamics con-
troller. The error states for control design are defined as
follows:

e1 = θ − θd , e2 = θ̇ − θ̇d , e3 = ξ − ξd ,

e4 = u − ud , e5 = γ − γd , e6 = γ̇ − γ̇d (33)

To achieve the control objective, the error differen-
tial equation of the {u, γ }-subsystem can be expressed
as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ė3 = e4

ė4 = Λu θ̇
2 + Ψu γ̇

2 + Xuτv + Φug − u̇d

ė5 = e6

ė6 = Λγ θ̇2 + Ψγ γ̇ 2 + Xγ τv + Φγ g − γ̈d

(34)

Similarly, the error differential equation of the {θ}-
subsystem is as follows:
{
ė1 = e2

ė2 = Λθ θ̇u + Ψθ γ̇ θ̇ + Xθ τw
(35)

3.1 Longitudinal control

In longitudinal control, the control objective is con-
trolling the inclination angle of the body by the torque
τv . Longitudinal motion is coupled with the inclina-
tion angle of the body. The longitudinal velocity cannot
be directly controlled, but the inclination angle affects
it directly. In order to apply the sliding-mode control
technique, we can define sliding surface as

s1 = ė3 + c1e3 (36)

where c1 is positive, then we can differentiate the slid-
ing surface with respect to time as

ṡ1 = ë3 + c1ė3 = Λu θ̇
2 + Ψu γ̇

2 + Xuτv

+Φug − u̇d + c1ė3 (37)

By adopting the exponential approach law, i.e., ṡ1 =
−k1sgn(s1)− k2s1, the controller could be designed as
follows:

τv = −Λu

Xu
θ̇2 − Ψu

Xu
γ̇ 2 − Φu

Xu
g + u̇d

Xu

− k1

Xu
sgn (s1) − k2

Xu
s1 (38)

where k1 and k2 are positive design constants.

3.2 Zero-dynamics controller

The longitudinal position and inclination angle vari-
ables should be controlled by the only control input τv .
To deal with this underactuated problem, we can get
the zero-dynamics subsystem by setting the longitudi-
nal position error e3 = ξ − ξd as zero, i.e., e3 = 0
and then ė4 = 0, where ξ is the displacement of the
vehicle along the direction of the longitudinal velocity.
From (31), we have τv as follows:

τv = −Λu

Xu
θ̇2 − Ψu

Xu
γ̇ 2 − Φu

Xu
g + u̇d

Xu
(39)
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Substituting τv into the tracking error of ė6 and the
fact that γ̈ = ė6 + γ̈d , the zero-dynamics subsystem is
obtained as (40).

γ̈ =
(

Λγ − Xγ Λu

Xu

)
θ̇2 − Cu

Aγ

g + Xγ u̇d
Xu

(40)

The control objective for designing zero-dynamics
controller is finding an appropriate expression for the
u̇d as an input of longitudinal control, i.e., Tv . The slid-
ing surface for zero-dynamics subsystem can be given
by:

s2 = ė5 + c2e5 (41)

where c2 is positive, then we can differentiate the slid-
ing surface with respect to time as

ṡ2 = ë5 + c2ė5 =
(

Λγ − Xγ Λu

Xu

)
θ̇2

− Cu

Aγ

g + Xγ u̇d
Xu

− γ̈d + c2ė5 (42)

By adopting the exponential approach law, i.e., ṡ2 =
−k3sgn(s2)− k4s2, the controller could be designed as
follows:

u̇d = Xu

Xγ

[(
Xγ Λu

Xu
− Λγ

)
θ̇2 + Cu

Aγ

g + γ̈d − c2ė5

− k3sgn (s2) − k4s2

]
(43)

where k3 and k4 are positive design constants.

3.3 Rotational control

In this section, the control objective is to design a con-
trol strategy that permits the two-wheeled vehicle to
track its desired path. The rotational angle θ is con-
trolled by the torque τw directly in the {θ}-subsystem.
The sliding surface for rotational control is defined as
follows:

s3 = ė1 + c3e1 (44)

ṡ3 = ë1 + c3ė1 = Λθ θ̇u + Ψθ γ̇ θ̇ + Xθ τw

− θ̈d + c3ė1, (45)

By adopting the exponential approach law, i.e., ṡ3 =
−k5sgn(s2)− k6s2, the controller could be designed as
follows:

τw = −Λθ

Xθ

θ̇u − Ψθ

Xθ

γ̇ θ̇ + 1

Xθ

θ̈d − c3

Xθ

ė1

− k5

Xθ

sgn(s3) − k6

Xθ

s3 (46)

3.4 Closed-loop simulation

To evaluate the effectiveness of the proposed controller
laws, a simulation study is carried out in this section.
In this simulation, the initial conditions are supposed
as x0 = 0 m, y0 = 0 m, θ0 = 0 rad, θ̇0 = 0 rad/s,
γ0 = π

4 rad, γ̇0 = 0 rad/s, u0 = 0 m/s. The desired
value of the inclination angle and inclination angular
velocity is zero, i.e., γd = 0 rad, γ̇d = 0 rad/s, and
the desired trajectory for rotational angular velocity is
given as θ̇d = 1 rad/s. To achieve the control objectives,
the coefficients of the controllers are designed as k1 =
2, k2 = 4, k3 = k5 = 0.4, k4 = k6 = 0.2, c1 = c2 =
c3 = 0.4.

For the study of the effect of the ′mchhθ̇ u sin γ ′
term, two simulations have been conducted. In the first
simulation, the proposed controller is applied to the
‘modified model’ (see Figs. 7a, 8a, 9a, 10a), and in
the second simulation, a controller based on conven-
tional equation is applied to the ‘modified model’ (see
Figs. 7b, 8b, 9b, 10b). This controller is the same as the
first controller except in τw which does not contain the
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Fig. 7 Trajectory tracking of the robot on x–y plane. a ‘modified
model’with the controller based on ‘modifiedmodel.’b ‘modified
model’ with the controller based on ‘conventional model’
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Fig. 8 Steering angular velocity of the chassis (θ̇) versus time. a
‘modified model’ with the controller based on ‘modified model.’
b ‘modified model’ with the controller based on ‘conventional
model’
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‘modified model’ with the controller based on ‘conventional
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term: ′− Λθ

Xθ
θ̇u′. Path tracking of the two-wheeled robot

on the x−−y plane is plotted in Fig. 7. Figure 8 shows
the steering angular velocity. The longitudinal velocity
of the chassis is plotted in Fig. 9, and the inclination
angle is plotted in Fig. 10. The result demonstrates that
if we apply a controller based on the ‘modified model,’
the inclination angle of the robot is stable (see Fig. 10a);
the robot ultimately tracks an approximate circle (see
Figs. 7a, 8a). But if we ignore the modified term in the
controller design, the inclination angle of the robot is
stable (see Fig. 10b), and however, the system could
not follow the desired path (see Figs. 7a, 8a). As it is
shown, the existence of the modified term affects the
path tracking control of the system significantly. As a
result, this nonlinear coupling term is important, and if
we ignore it, in designing the controller, the controller
cannot compensate its effect.

4 Conclusion

This paper is devoted to the dynamical analysis of two-
wheeled self-balancing robots. We obtained a modi-

fied dynamical formulation of the system by two meth-
ods, Kane’s approach and Lagrangian method. Both
approaches result in the same formulation. Our model
is more detailed compared with the ‘conventional mod-
els.’ The most important difference is the appearance
of a new term, ′mchhθ̇ u sin γ ′, in the dynamical equa-
tions. The importance of this term and its effects on
the behavior of the system are shown by different sim-
ulations. Meaningful distinction is observed between
the modified and the ‘conventional models.’ It is also
shown that the total energy of the system remains con-
stant only for the ‘modified model,’ which is a sec-
ond proof that our dynamical equations and simula-
tions are correct. Then by applying sliding-mode con-
trollers, it is shown that the existence of the new term,
′mchhθ̇ u sin γ ′ affects the path tracking control of the
system significantly. As a result, this nonlinearity is
important, and if we ignore it, in designing the con-
troller, the controller cannot compensate its effect.

Appendix 1

Transform matrixes and relative linear and angular
velocities related to the chassis and the wheels are pre-
sented as

0
1T =

⎡

⎢⎢⎢
⎣

cos θ − sin θ 0 x

sin θ cos θ 0 y

0 0 1 rw

0 0 0 1

⎤

⎥⎥⎥
⎦

(47)

1
2ch

T =

⎡

⎢⎢⎢
⎣

cos γ 0 sin γ 0

0 1 0 0

− sin γ 0 cos γ 0

0 0 0 1

⎤

⎥⎥⎥
⎦

(48)

2ch
3ch

T =

⎡

⎢⎢⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 h

0 0 0 1

⎤

⎥⎥⎥
⎦

(49)

0
1v =

⎡

⎢
⎣

ẋ

ẏ

0

⎤

⎥
⎦ , 1

2ch
v =

⎡

⎢
⎣

0

0

0

⎤

⎥
⎦ ,

2ch
3ch

v =
⎡

⎢
⎣

0

0

0

⎤

⎥
⎦ (50)

0
1Ω =

⎡

⎢
⎣

0

0

θ̇

⎤

⎥
⎦ , 1

2ch
Ω =

⎡

⎢
⎣

0

γ̇

0

⎤

⎥
⎦ ,

2ch
3ch

Ω =
⎡

⎢
⎣

0

0

0

⎤

⎥
⎦ (51)
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1
2w
T =

⎡

⎢⎢⎢
⎣

cos α − sin α 0 l cos α

sin α cos α 0 l sin α

0 0 1 0

0 0 0 1

⎤

⎥⎥⎥
⎦

(52)

2w
3w
T =

⎡

⎢⎢⎢
⎣

1 0 0 0

0 cos ϕ − sin ϕ 0

0 sin ϕ cos ϕ 0

0 0 0 1

⎤

⎥⎥⎥
⎦

(53)

3w
4w
T =

⎡

⎢
⎢⎢
⎣

1 0 0 0

0 1 0 rw

0 0 1 0

0 0 0 1

⎤

⎥
⎥⎥
⎦

(54)

0
1v =

⎡

⎢
⎣

ẋ

ẏ

0

⎤

⎥
⎦ , 1

2w
v = 2w

3w
v = 3w

4w
v =

⎡

⎢
⎣

0

0

0

⎤

⎥
⎦ (55)

0
1Ω =

⎡

⎢
⎣

0

0

θ̇

⎤

⎥
⎦ ,

2w
3w

Ω =
⎡

⎢
⎣

ϕ̇

0

0

⎤

⎥
⎦ , 1

2w
Ω = 3w

4w
Ω =

⎡

⎢
⎣

0

0

0

⎤

⎥
⎦

(56)

where 0, 1, 2ch, 3ch, 2w, 3w, and 4w denote, respec-
tively, the frames X0Y0Z0, X1Y1Z1, X2chY2ch Z2ch ,
X3chY3ch Z3ch , X2wY2w Z2w , X3wY3w Z3w and X4wY4w

Z4w .

Appendix 2

Λu = −BuCγ − AγCu

Au Aγ − BuBγ

, Ψu = − Cu Aγ

Au Aγ − BuBγ

,

Xu = Aγ /rw + Bu

Au Aγ − BuBγ

, Φu = BuDγ

Au Aγ − BuBγ

,

Λγ = −Cγ Au + BuCu

Au Aγ − BuBγ

, Ψγ = BγCu

Au Aγ − BuBγ

,

Xγ = − Bγ

rw
− Au

Au Aγ − BuBγ

, Φγ = − AuDγ

Au Aγ − Bu Bγ

,

Λθ = Bθ

Aθ

, Ψθ = Cθ

Aθ

, Xθ = Dθ

Aθ

,

Au = 3mw + mch, Bu = h mch cos γ,

Cu = −h mch sin γ, Aγ = Iyych + mchh
2,

Bγ = h mch cos γ,

Cγ = −1

2

[
Ixxch + mchh

2 − Izzch

]
sin 2γ,

Dγ = −h mch sin γ,

Aθ =
[
2

(
mwl

2 + I2w

)
+ Ixxch sin2 γ + mchh

2 sin2 γ

+ Izzch cos2 γ + mwl
2
]
,

Bθ = −mchh sin (γ ) ,

Cθ = −
(
mchh

2 + Ixxch − Izzch

)
sin (2γ ) ,

Dθ = 1

rw
,
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